o
    Ahz                     @  sZ  U d Z ddlmZ ddlZddlZddlZddlmZ ddl	m
Z
 ddlmZmZmZmZmZmZmZmZmZ ddlmZmZ ddlmZmZ d	d
lmZmZmZ d	dlm Z  d	dl!m"Z" d	dlm#Z# ej$dk roddlm%Z% nddlm%Z% ej&Z'ej(deddiej)G dd dZ*ej(deddiej)G dd dZ+ej(deddiej)G dd dZ,ej(deddiej)G dd dZ-er!G dd de%Z.G dd de%Z/G dd de%Z0G d d! d!e%Z1ee/ej2e.ej3f Z4ee1ej5e0ej6f Z7ee8eeef e9eef ee f Z:d"e;d#< ed$ee4e:f d%Z<ed&ee7e:f d%Z=ed' Z>d"e;d(< ed)d)d*dfd6d7Z?ed)d)d*dgd:d7Z?ed)d)d;dhd=d7Z?d>ded?didAd7Z?edBZ@edCddDZAG dEdF dFejBe%eA ZCG dGdH dHe%e@ ZDG dIdJ dJe%e@ ZEG dKdL dLe%ZFG dMdN dNe%ZGG dOdP dPe%ZHG dQdR dRe%ZIee@ge@f ZJ	 ee@ejKe ge@f ZL	 eeEe@ eDe@ f ZMeeHeIeFeGf ZNeeLe@ eJe@ f ZOedjdTdUZPedkdXdUZPedldZdUZPdmd\dUZPed]ZQereeQd)f ZRnej(dei ej)G d^d_ d_ZRereeQd)f ZSnej(dei ej)G d`da daZSedbZTG dcdd ddZUdS )nzBThis module contains related classes and functions for validation.    )annotationsN)partialmethod)FunctionType)	TYPE_CHECKING	AnnotatedAnyCallableLiteralTypeVarUnioncastoverload)PydanticUndefinedcore_schema)Self	TypeAlias   )_decorators	_generics_internal_dataclass)GetCoreSchemaHandler)PydanticUserError)ArbitraryTypeWarning)      )ProtocolfrozenTc                   @  s2   e Zd ZU dZded< dd
dZedddZdS )AfterValidatoraT  !!! abstract "Usage Documentation"
        [field *after* validators](../concepts/validators.md#field-after-validator)

    A metadata class that indicates that a validation should be applied **after** the inner validation logic.

    Attributes:
        func: The validator function.

    Example:
        ```python
        from typing import Annotated

        from pydantic import AfterValidator, BaseModel, ValidationError

        MyInt = Annotated[int, AfterValidator(lambda v: v + 1)]

        class Model(BaseModel):
            a: MyInt

        print(Model(a=1).a)
        #> 2

        try:
            Model(a='a')
        except ValidationError as e:
            print(e.json(indent=2))
            '''
            [
              {
                "type": "int_parsing",
                "loc": [
                  "a"
                ],
                "msg": "Input should be a valid integer, unable to parse string as an integer",
                "input": "a",
                "url": "https://errors.pydantic.dev/2/v/int_parsing"
              }
            ]
            '''
        ```
    Kcore_schema.NoInfoValidatorFunction | core_schema.WithInfoValidatorFunctionfuncsource_typer   handlerr   returncore_schema.CoreSchemac                 C  sP   ||}t | jd}|rttj| j}tj||dS ttj| j}tj||dS )Nafterschema)_inspect_validatorr   r   r   WithInfoValidatorFunction"with_info_after_validator_functionNoInfoValidatorFunction no_info_after_validator_function)selfr    r!   r&   info_argr    r.   _/var/www/html/openai_agents/venv/lib/python3.10/site-packages/pydantic/functional_validators.py__get_pydantic_core_schema__J   s   z+AfterValidator.__get_pydantic_core_schema__	decorator>_decorators.Decorator[_decorators.FieldValidatorDecoratorInfo]r   c                 C  s   | |j dS )Nr   r3   clsr1   r.   r.   r/   _from_decoratorT   s   zAfterValidator._from_decoratorNr    r   r!   r   r"   r#   r1   r2   r"   r   )__name__
__module____qualname____doc____annotations__r0   classmethodr6   r.   r.   r.   r/   r      s   
 *

r   c                   @  >   e Zd ZU dZded< eZded< dddZedddZ	dS )BeforeValidatora  !!! abstract "Usage Documentation"
        [field *before* validators](../concepts/validators.md#field-before-validator)

    A metadata class that indicates that a validation should be applied **before** the inner validation logic.

    Attributes:
        func: The validator function.
        json_schema_input_type: The input type used to generate the appropriate
            JSON Schema (in validation mode). The actual input type is `Any`.

    Example:
        ```python
        from typing import Annotated

        from pydantic import BaseModel, BeforeValidator

        MyInt = Annotated[int, BeforeValidator(lambda v: v + 1)]

        class Model(BaseModel):
            a: MyInt

        print(Model(a=1).a)
        #> 2

        try:
            Model(a='a')
        except TypeError as e:
            print(e)
            #> can only concatenate str (not "int") to str
        ```
    r   r   r   json_schema_input_typer    r!   r   r"   r#   c                 C  n   ||}| j tu rd n|| j }t| jd}|r(ttj| j}tj|||dS ttj	| j}tj
|||dS )Nbeforer&   json_schema_input_schema)rA   r   generate_schemar'   r   r   r   r(   #with_info_before_validator_functionr*   !no_info_before_validator_functionr,   r    r!   r&   input_schemar-   r   r.   r.   r/   r0   ~   s"   

z,BeforeValidator.__get_pydantic_core_schema__r1   r2   r   c                 C     | |j |jjdS N)r   rA   r   inforA   r4   r.   r.   r/   r6         zBeforeValidator._from_decoratorNr7   r8   
r9   r:   r;   r<   r=   r   rA   r0   r>   r6   r.   r.   r.   r/   r@   Y   s   
  
r@   c                   @  r?   )PlainValidatora  !!! abstract "Usage Documentation"
        [field *plain* validators](../concepts/validators.md#field-plain-validator)

    A metadata class that indicates that a validation should be applied **instead** of the inner validation logic.

    !!! note
        Before v2.9, `PlainValidator` wasn't always compatible with JSON Schema generation for `mode='validation'`.
        You can now use the `json_schema_input_type` argument to specify the input type of the function
        to be used in the JSON schema when `mode='validation'` (the default). See the example below for more details.

    Attributes:
        func: The validator function.
        json_schema_input_type: The input type used to generate the appropriate
            JSON Schema (in validation mode). The actual input type is `Any`.

    Example:
        ```python
        from typing import Annotated, Union

        from pydantic import BaseModel, PlainValidator

        def validate(v: object) -> int:
            if not isinstance(v, (int, str)):
                raise ValueError(f'Expected int or str, go {type(v)}')

            return int(v) + 1

        MyInt = Annotated[
            int,
            PlainValidator(validate, json_schema_input_type=Union[str, int]),  # (1)!
        ]

        class Model(BaseModel):
            a: MyInt

        print(Model(a='1').a)
        #> 2

        print(Model(a=1).a)
        #> 2
        ```

        1. In this example, we've specified the `json_schema_input_type` as `Union[str, int]` which indicates to the JSON schema
        generator that in validation mode, the input type for the `a` field can be either a [`str`][] or an [`int`][].
    r   r   r   rA   r    r!   r   r"   r#   c           	   	   C  s   ddl m} z||}|dtjdd |||d}W n |y(   d }Y nw || j}t| jd}|rFt	tj
| j}tj|||dS t	tj| j}tj|||dS )	Nr   PydanticSchemaGenerationErrorserializationc                 S     || S Nr.   vhr.   r.   r/   <lambda>       z=PlainValidator.__get_pydantic_core_schema__.<locals>.<lambda>)functionr&   return_schemaplain)rT   rE   )pydanticrS   getr   #wrap_serializer_function_ser_schemarF   rA   r'   r   r   r(   "with_info_plain_validator_functionr*    no_info_plain_validator_function)	r,   r    r!   rS   r&   rT   rJ   r-   r   r.   r.   r/   r0      s:   z+PlainValidator.__get_pydantic_core_schema__r1   r2   r   c                 C  rK   rL   rM   r4   r.   r.   r/   r6      rO   zPlainValidator._from_decoratorNr7   r8   )
r9   r:   r;   r<   r=   r   rA   r0   r>   r6   r.   r.   r.   r/   rQ      s   
 .
)rQ   c                   @  r?   )WrapValidatora  !!! abstract "Usage Documentation"
        [field *wrap* validators](../concepts/validators.md#field-wrap-validator)

    A metadata class that indicates that a validation should be applied **around** the inner validation logic.

    Attributes:
        func: The validator function.
        json_schema_input_type: The input type used to generate the appropriate
            JSON Schema (in validation mode). The actual input type is `Any`.

    ```python
    from datetime import datetime
    from typing import Annotated

    from pydantic import BaseModel, ValidationError, WrapValidator

    def validate_timestamp(v, handler):
        if v == 'now':
            # we don't want to bother with further validation, just return the new value
            return datetime.now()
        try:
            return handler(v)
        except ValidationError:
            # validation failed, in this case we want to return a default value
            return datetime(2000, 1, 1)

    MyTimestamp = Annotated[datetime, WrapValidator(validate_timestamp)]

    class Model(BaseModel):
        a: MyTimestamp

    print(Model(a='now').a)
    #> 2032-01-02 03:04:05.000006
    print(Model(a='invalid').a)
    #> 2000-01-01 00:00:00
    ```
    zScore_schema.NoInfoWrapValidatorFunction | core_schema.WithInfoWrapValidatorFunctionr   r   rA   r    r!   r   r"   r#   c                 C  rB   )NwraprD   )rA   r   rF   r'   r   r   r   WithInfoWrapValidatorFunction!with_info_wrap_validator_functionNoInfoWrapValidatorFunctionno_info_wrap_validator_functionrI   r.   r.   r/   r0   +  s&   

z*WrapValidator.__get_pydantic_core_schema__r1   r2   r   c                 C  rK   rL   rM   r4   r.   r.   r/   r6   C  rO   zWrapValidator._from_decoratorNr7   r8   rP   r.   r.   r.   r/   rd      s   
 &
rd   c                   @  s   e Zd ZdddZdS )	_OnlyValueValidatorClsMethodr5   r   valuer"   c                C     d S rV   r.   r,   r5   rk   r.   r.   r/   __call__N      z%_OnlyValueValidatorClsMethod.__call__Nr5   r   rk   r   r"   r   r9   r:   r;   rn   r.   r.   r.   r/   rj   M      rj   c                   @     e Zd Zd
ddZd	S )_V2ValidatorClsMethodr5   r   rk   rN   core_schema.ValidationInfo[Any]r"   c                C  rl   rV   r.   r,   r5   rk   rN   r.   r.   r/   rn   Q  ro   z_V2ValidatorClsMethod.__call__Nr5   r   rk   r   rN   ru   r"   r   rq   r.   r.   r.   r/   rt   P  rr   rt   c                   @  rs   ) _OnlyValueWrapValidatorClsMethodr5   r   rk   r!   (core_schema.ValidatorFunctionWrapHandlerr"   c                C  rl   rV   r.   r,   r5   rk   r!   r.   r.   r/   rn   T  ro   z)_OnlyValueWrapValidatorClsMethod.__call__N)r5   r   rk   r   r!   ry   r"   r   rq   r.   r.   r.   r/   rx   S  rr   rx   c                   @  s   e Zd Zdd	d
ZdS )_V2WrapValidatorClsMethodr5   r   rk   r!   ry   rN   ru   r"   c                C  rl   rV   r.   r,   r5   rk   r!   rN   r.   r.   r/   rn   W     z"_V2WrapValidatorClsMethod.__call__N)
r5   r   rk   r   r!   ry   rN   ru   r"   r   rq   r.   r.   r.   r/   r{   V  rr   r{   r   _PartialClsOrStaticMethod"_V2BeforeAfterOrPlainValidatorType)bound_V2WrapValidatorType)rC   r$   re   r^   FieldValidatorModes.)check_fieldsrA   fieldstrfieldsmodeLiteral['wrap']r   bool | NonerA   r   r"   6Callable[[_V2WrapValidatorType], _V2WrapValidatorType]c               G  rl   rV   r.   r   r   r   rA   r   r.   r.   r/   field_validatory     r   Literal['before', 'plain']RCallable[[_V2BeforeAfterOrPlainValidatorType], _V2BeforeAfterOrPlainValidatorType]c               G  rl   rV   r.   r   r.   r.   r/   r     r   )r   r   Literal['after']c               G  rl   rV   r.   )r   r   r   r   r.   r.   r/   r     r}   r$   )r   r   rA   Callable[[Any], Any]c                 s   t | trtddddvrturtdddtu r&dkr&t| gR tdd	 D s;td
ddd fdd}|S )aO  !!! abstract "Usage Documentation"
        [field validators](../concepts/validators.md#field-validators)

    Decorate methods on the class indicating that they should be used to validate fields.

    Example usage:
    ```python
    from typing import Any

    from pydantic import (
        BaseModel,
        ValidationError,
        field_validator,
    )

    class Model(BaseModel):
        a: str

        @field_validator('a')
        @classmethod
        def ensure_foobar(cls, v: Any):
            if 'foobar' not in v:
                raise ValueError('"foobar" not found in a')
            return v

    print(repr(Model(a='this is foobar good')))
    #> Model(a='this is foobar good')

    try:
        Model(a='snap')
    except ValidationError as exc_info:
        print(exc_info)
        '''
        1 validation error for Model
        a
          Value error, "foobar" not found in a [type=value_error, input_value='snap', input_type=str]
        '''
    ```

    For more in depth examples, see [Field Validators](../concepts/validators.md#field-validators).

    Args:
        field: The first field the `field_validator` should be called on; this is separate
            from `fields` to ensure an error is raised if you don't pass at least one.
        *fields: Additional field(s) the `field_validator` should be called on.
        mode: Specifies whether to validate the fields before or after validation.
        check_fields: Whether to check that the fields actually exist on the model.
        json_schema_input_type: The input type of the function. This is only used to generate
            the appropriate JSON Schema (in validation mode) and can only specified
            when `mode` is either `'before'`, `'plain'` or `'wrap'`.

    Returns:
        A decorator that can be used to decorate a function to be used as a field_validator.

    Raises:
        PydanticUserError:
            - If `@field_validator` is used bare (with no fields).
            - If the args passed to `@field_validator` as fields are not strings.
            - If `@field_validator` applied to instance methods.
    z`@field_validator` should be used with fields and keyword arguments, not bare. E.g. usage should be `@validator('<field_name>', ...)`zvalidator-no-fieldscode)rC   r^   re   z;`json_schema_input_type` can't be used when mode is set to zvalidator-input-typer^   c                 s  s    | ]}t |tV  qd S rV   )
isinstancer   ).0r   r.   r.   r/   	<genexpr>  s    z"field_validator.<locals>.<genexpr>z`@field_validator` fields should be passed as separate string args. E.g. usage should be `@validator('<field_name_1>', '<field_name_2>', ...)`zvalidator-invalid-fieldsfHCallable[..., Any] | staticmethod[Any, Any] | classmethod[Any, Any, Any]r"   (_decorators.PydanticDescriptorProxy[Any]c                   s>   t | rtdddt | } t j d}t | |S )Nz8`@field_validator` cannot be applied to instance methodszvalidator-instance-methodr   )r   r   r   rA   )r   is_instance_method_from_sigr   %ensure_classmethod_based_on_signatureFieldValidatorDecoratorInfoPydanticDescriptorProxyr   dec_infor   r   rA   r   r.   r/   dec  s   

zfield_validator.<locals>.decN)r   r   r"   r   )r   r   r   r   r   all)r   r   r   rA   r   r   r.   r   r/   r     s(   
D
_ModelType_ModelTypeCo)	covariantc                   @  s   e Zd ZdZ	ddd	d
ZdS )ModelWrapValidatorHandlerz]`@model_validator` decorated function handler argument type. This is used when `mode='wrap'`.Nrk   r   outer_locationstr | int | Noner"   r   c                C  rl   rV   r.   )r,   rk   r   r.   r.   r/   rn        z"ModelWrapValidatorHandler.__call__rV   )rk   r   r   r   r"   r   r9   r:   r;   r<   rn   r.   r.   r.   r/   r     s    r   c                   @  s   e Zd ZdZdd
dZdS )ModelWrapValidatorWithoutInfozA `@model_validator` decorated function signature.
    This is used when `mode='wrap'` and the function does not have info argument.
    r5   type[_ModelType]rk   r   r!   %ModelWrapValidatorHandler[_ModelType]r"   r   c                C  rl   rV   r.   rz   r.   r.   r/   rn        	z&ModelWrapValidatorWithoutInfo.__call__N)r5   r   rk   r   r!   r   r"   r   r   r.   r.   r.   r/   r         r   c                   @  s   e Zd ZdZdddZdS )ModelWrapValidatorzSA `@model_validator` decorated function signature. This is used when `mode='wrap'`.r5   r   rk   r   r!   r   rN   core_schema.ValidationInfor"   r   c                C  rl   rV   r.   r|   r.   r.   r/   rn   ,  s   
zModelWrapValidator.__call__N)
r5   r   rk   r   r!   r   rN   r   r"   r   r   r.   r.   r.   r/   r   )      r   c                   @  s   e Zd ZdZdddZdS )	#FreeModelBeforeValidatorWithoutInfoA `@model_validator` decorated function signature.
    This is used when `mode='before'` and the function does not have info argument.
    rk   r   r"   c                C  rl   rV   r.   )r,   rk   r.   r.   r/   rn   >  r}   z,FreeModelBeforeValidatorWithoutInfo.__call__N)rk   r   r"   r   r   r.   r.   r.   r/   r   9  r   r   c                   @  s   e Zd ZdZd	ddZdS )
ModelBeforeValidatorWithoutInfor   r5   r   rk   r"   c                C  rl   rV   r.   rm   r.   r.   r/   rn   M  r   z(ModelBeforeValidatorWithoutInfo.__call__Nrp   r   r.   r.   r.   r/   r   H  r   r   c                   @  s   e Zd ZdZd
ddZd	S )FreeModelBeforeValidatorUA `@model_validator` decorated function signature. This is used when `mode='before'`.rk   r   rN   ru   r"   c                C  rl   rV   r.   )r,   rk   rN   r.   r.   r/   rn   [  r   z!FreeModelBeforeValidator.__call__N)rk   r   rN   ru   r"   r   r   r.   r.   r.   r/   r   X  r   r   c                   @  s   e Zd ZdZddd	Zd
S )ModelBeforeValidatorr   r5   r   rk   rN   ru   r"   c                C  rl   rV   r.   rv   r.   r.   r/   rn   i  r   zModelBeforeValidator.__call__Nrw   r   r.   r.   r.   r/   r   f  r   r   |Callable[[_AnyModelWrapValidator[_ModelType]], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]]c                 C  rl   rV   r.   r   r.   r.   r/   model_validator  r   r   Literal['before']rCallable[[_AnyModelBeforeValidator], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]]c                 C  rl   rV   r.   r   r.   r.   r/   r     r   }Callable[[_AnyModelAfterValidator[_ModelType]], _decorators.PydanticDescriptorProxy[_decorators.ModelValidatorDecoratorInfo]]c                 C  rl   rV   r.   r   r.   r.   r/   r     r   "Literal['wrap', 'before', 'after']c                   s   d fdd}|S )	a@  !!! abstract "Usage Documentation"
        [Model Validators](../concepts/validators.md#model-validators)

    Decorate model methods for validation purposes.

    Example usage:
    ```python
    from typing_extensions import Self

    from pydantic import BaseModel, ValidationError, model_validator

    class Square(BaseModel):
        width: float
        height: float

        @model_validator(mode='after')
        def verify_square(self) -> Self:
            if self.width != self.height:
                raise ValueError('width and height do not match')
            return self

    s = Square(width=1, height=1)
    print(repr(s))
    #> Square(width=1.0, height=1.0)

    try:
        Square(width=1, height=2)
    except ValidationError as e:
        print(e)
        '''
        1 validation error for Square
          Value error, width and height do not match [type=value_error, input_value={'width': 1, 'height': 2}, input_type=dict]
        '''
    ```

    For more in depth examples, see [Model Validators](../concepts/validators.md#model-validators).

    Args:
        mode: A required string literal that specifies the validation mode.
            It can be one of the following: 'wrap', 'before', or 'after'.

    Returns:
        A decorator that can be used to decorate a function to be used as a model validator.
    r   r   r"   r   c                   s*    dkr	t | } t j d}t | |S )Nr$   r   )r   r   ModelValidatorDecoratorInfor   r   r   r.   r/   r     s   
zmodel_validator.<locals>.decN)r   r   r"   r   r.   )r   r   r.   r   r/   r     s   1AnyTypec                   @  s2   e Zd ZdZedddZedddZejZdS )
InstanceOfu  Generic type for annotating a type that is an instance of a given class.

        Example:
            ```python
            from pydantic import BaseModel, InstanceOf

            class Foo:
                ...

            class Bar(BaseModel):
                foo: InstanceOf[Foo]

            Bar(foo=Foo())
            try:
                Bar(foo=42)
            except ValidationError as e:
                print(e)
                """
                [
                │   {
                │   │   'type': 'is_instance_of',
                │   │   'loc': ('foo',),
                │   │   'msg': 'Input should be an instance of Foo',
                │   │   'input': 42,
                │   │   'ctx': {'class': 'Foo'},
                │   │   'url': 'https://errors.pydantic.dev/0.38.0/v/is_instance_of'
                │   }
                ]
                """
            ```
        itemr   r"   c                 C  s   t ||  f S rV   )r   r5   r   r.   r.   r/   __class_getitem__  s   zInstanceOf.__class_getitem__sourcer   r!   r   r#   c                 C  sh   ddl m} tt|p|}z||}W n |y!   | Y S w tjdd |d|d< tj||dS )Nr   rR   c                 S  rU   rV   r.   rW   r.   r.   r/   rZ     r[   z9InstanceOf.__get_pydantic_core_schema__.<locals>.<lambda>r\   r&   rT   )python_schemajson_schema)r_   rS   r   is_instance_schemar   
get_originra   json_or_python_schema)r5   r   r!   rS   instance_of_schemaoriginal_schemar.   r.   r/   r0   	  s   
z'InstanceOf.__get_pydantic_core_schema__N)r   r   r"   r   r   r   r!   r   r"   r#   )	r9   r:   r;   r<   r>   r   r0   object__hash__r.   r.   r.   r/   r     s     
r   c                   @  s.   e Zd ZdZdddZedddZejZdS )SkipValidationa  If this is applied as an annotation (e.g., via `x: Annotated[int, SkipValidation]`), validation will be
            skipped. You can also use `SkipValidation[int]` as a shorthand for `Annotated[int, SkipValidation]`.

        This can be useful if you want to use a type annotation for documentation/IDE/type-checking purposes,
        and know that it is safe to skip validation for one or more of the fields.

        Because this converts the validation schema to `any_schema`, subsequent annotation-applied transformations
        may not have the expected effects. Therefore, when used, this annotation should generally be the final
        annotation applied to a type.
        r   r   r"   c                 C  s   t |t f S rV   )r   r   r   r.   r.   r/   r   1  s   z SkipValidation.__class_getitem__r   r!   r   r#   c                   sj   t   t dt || W d    n1 sw   Y  d fddgi}tj|tjdd  ddS )Nignore pydantic_js_annotation_functionsc                   s   | S rV   r.   )_crY   r   r.   r/   rZ   9  r[   z=SkipValidation.__get_pydantic_core_schema__.<locals>.<lambda>c                 S  rU   rV   r.   rW   r.   r.   r/   rZ   =  r[   r   )metadatarT   )warningscatch_warningssimplefilterr   r   
any_schemara   )r5   r   r!   r   r.   r   r/   r0   4  s   

z+SkipValidation.__get_pydantic_core_schema__N)r   r   r"   r   r   )	r9   r:   r;   r<   r   r>   r0   r   r   r.   r.   r.   r/   r   $  s    

r   
_FromTypeTc                   @  s$   e Zd ZdZddd	ZdddZdS )
ValidateAsa  A helper class to validate a custom type from a type that is natively supported by Pydantic.

    Args:
        from_type: The type natively supported by Pydantic to use to perform validation.
        instantiation_hook: A callable taking the validated type as an argument, and returning
            the populated custom type.

    Example:
        ```python {lint="skip"}
        from typing import Annotated

        from pydantic import BaseModel, TypeAdapter, ValidateAs

        class MyCls:
            def __init__(self, a: int) -> None:
                self.a = a

            def __repr__(self) -> str:
                return f"MyCls(a={self.a})"

        class Model(BaseModel):
            a: int


        ta = TypeAdapter(
            Annotated[MyCls, ValidateAs(Model, lambda v: MyCls(a=v.a))]
        )

        print(ta.validate_python({'a': 1}))
        #> MyCls(a=1)
        ```
    instantiation_hookCallable[[_FromTypeT], Any]	from_typetype[_FromTypeT]r"   Nonec                C  s   || _ || _d S rV   )r   r   )r,   r   r   r.   r.   r/   __init__j  s   
zValidateAs.__init__r   r   r!   r   r#   c                 C  s   || j }tj| j|dS )Nr%   )r   r   r+   r   )r,   r   r!   r&   r.   r.   r/   r0   n  s
   
z'ValidateAs.__get_pydantic_core_schema__N)r   r   r   r   r"   r   r   )r9   r:   r;   r<   r   r0   r.   r.   r.   r/   r   G  s    
"r   r.   )r   r   r   r   r   r   r   r   rA   r   r"   r   )r   r   r   r   r   r   r   r   rA   r   r"   r   )
r   r   r   r   r   r   r   r   r"   r   )r   r   r   r   r   r   r   r   rA   r   r"   r   )r   r   r"   r   )r   r   r"   r   )r   r   r"   r   )r   r   r"   r   )Vr<   
__future__r   _annotationsdataclassessysr   	functoolsr   typesr   typingr   r   r   r   r	   r
   r   r   r   pydantic_corer   r   typing_extensionsr   r   	_internalr   r   r   annotated_handlersr   errorsr   r   version_infor   inspect_validatorr'   	dataclass
slots_truer   r@   rQ   rd   rj   rt   rx   r{   r(   r*   _V2Validatorrf   rh   _V2WrapValidatorr>   staticmethodr~   r=   r   r   r   r   r   r   ValidatorFunctionWrapHandlerr   r   r   r   r   r   r   ModelAfterValidatorWithoutInfoValidationInfoModelAfterValidator_AnyModelWrapValidator_AnyModelBeforeValidator_AnyModelAfterValidatorr   r   r   r   r   r   r.   r.   r.   r/   <module>   s    ,
<BcJ
,


o

;<